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A method for the classi®cation of crystal structures of chemical compounds is

proposed, which is based on the representation of the system of interatomic

bonds in a crystal as a ®nite `reduced' graph. The program IsoTest is described,

allowing one to ®nd automatically the topological similarity (isotypism) for large

groups of stoichiometrically and structurally different compounds. The analysis

of crystal structures of simple and double sulfates and binary inorganic

compounds was carried out and numerous examples of topological isotypism of

the representatives of these groups of substances were found. It is shown that in

many cases the ionic sublattices, constructed according to one of the close

packings, can be selected in the sulfate crystal structures.

1. Introduction

The classi®cation of crystal structures is one of the main

problems of crystal chemistry. The most important step for its

solution is the choice of the taxonomic system, which allows

one to group compounds with similar features in their crystal

structures. Most of the modern classi®cation schemes are

based on considering the space symmetry of a crystal and also

of the short-distance atomic environment. Thus, the typical

classi®cation criteria are: belonging to the same space group,

distribution of atoms or crystallographically nonequivalent

structural groups on similar regular systems of points

(Wyckoff sites) and identical coordination numbers of atoms.

The ®rst two criteria allow one to de®ne the concepts of

isopointal structures (Lima-de-Faria et al., 1990) and of struc-

tural class (Belsky et al., 1995); if the third is taken into

account, then the concept of structure type can be introduced

(Lima-de-Faria et al., 1990). In other schemes, the main

attention is paid to geometrical features of packing of struc-

tural units. They include the model of close packing of hard

spheres and the model of cation matrices (Borisov &

Podberyozskaya, 1984). All these methods of classi®cation can

be called `geometrical' because their key criteria are the

geometrical properties of a crystal structure. The concept of

structure type provides the analysis of the system of inter-

atomic bonds, however, within the ®rst coordination sphere of

atoms only. The technique of the crystal-chemical analysis,

considering long-range coordination spheres, was proposed by

Aslanov (1988) but it is also `geometrical' because it is based

on the analysis of the form of appropriate coordination

polyhedra and is oriented towards the description of

compounds with mainly nondirected interatomic interactions.

The main problem of all `geometrical' classi®cation schemes is

the complexity of the search for relations between compounds

whose crystal structures are distorted to some extent, although

some progress in its solution has been achieved (Malinovskii et

al., 1998). At the same time, the contacts between structural

groups are not frequently broken as a result of such distortion.

Therefore, the kind of organization of the whole system of

interatomic bonds in a crystal structure can be considered as

the most important `chemical' criterion for a crystal-chemical

analysis. We shall call classi®cation schemes that rely on this

criterion `topological' because a certain topology speci®ed on

a set of atoms corresponds to each variant of such an

organization. Note that the identi®cation of interatomic

contacts is a special crystal-chemical problem, which forms a

bridge between geometrical and topological descriptions of

crystal structure but is so far solved incompletely. We shall

return to this problem in x3. For instance, the topological

properties of atomic subnets have been taken into account in

the descriptions of silicates (Liebau, 1985), alloys (Pearson,

1972) and clathrates (Wells, 1986). However, in these cases, the

local topological properties are only considered (in particular,

the size of silicon±oxygen circles in silicates, the topology of

two-dimensional subnets selected in a three-dimensional

framework in alloys, combinatorial topological properties of

polyhedral cavities in clathrates etc.) and the description of

crystal-structure topology as a whole usually is not given. The

method of analysis of global topological properties of crystal

structures and separate atomic subnets, which is widely used

especially in crystal chemistry of zeolites (Atlas of Zeolite

Structure Types, 1996), will be discussed in x2.

The global topology of a system of interatomic bonds in a

crystal is completely speci®ed by a three-dimensional in®nite

non-oriented graph, each vertex and edge of which correspond

to an atom and an atomic interaction, respectively (Wells,

1977). Such a graph keeps information on all contacts between

atomic domains or, in other words, on crystal space connect-



edness. However, within the framework of this model, the

immediate analysis of only local topology is possible. For the

study of the global topological properties and also for the

machine representation of an in®nite graph, it is convenient to

use the method of reducing it to a ®nite `reduced' graph (RG)

or so-called labeled quotient graph, as was suggested by Chung

et al. (1984). The operation of reducing can be visually

represented by closing the edges of an in®nite graph, which

are extended outside or are on the boundary of a unit cell, to

translationally identical vertices, being inside the unit cell or

on its boundary (Fig. 1a). Apparently, the number of vertices

of a RG obtained is equal to the number of atoms in the unit

cell. Also, a RG can have loops and multiple edges. A loop or

a multiple edge appears if there are bonds between two

translationally equivalent atoms or between an atom and

several atoms, which are translationally identical to each

other. Algebraically, the operation of reducing corresponds to

the decomposition of space group G on a subgroup of all

translations T, resulting in generation of a factor group G/T.

Then we neglect bond lengths and angles in a crystal structure,

keeping its connectedness only. This enables one to draw a RG

on a plane (Fig. 1b). Generally, each vertex of a RG corre-

sponds to a primitive (without a basis) periodic subnet and

each edge corresponds to a system of bonds between primitive

subnets inserted into each other. Hereinafter, we use the term

`subnet' to pay attention to a system of interatomic bonds and

the term `sublattice' to emphasize that the topological prop-

erties are insigni®cant in such a context. According to Chung

et al. (1984), it is necessary to mark properly the RG vertices,

which are incident to loops and multiple edges to store the

information on the topology of these subnets. For this purpose,

let us select in each subnet an origin atom being inside a given

unit cell and assign to it the code (0, 0, 0). The codes of other

atoms of a given subnet will correspond to the coordinates of

the vector translations, which start at an origin atom. If there

are bonds between atoms of different subnets, the edges of a

RG must be labeled properly (Fig. 1b). Thus, a vector of labels

is compared to each vertex and edge in a RG. A labeled RG

describes an appropriate in®nite graph accurate to iso-

morphism. It should be noted that this approach has been

applied by Klee (1987) for analysis of the topology of poly-

silicate ions, i.e. when the vertices of a RG correspond to

atoms of the same chemical sort. The quotient RGs were used,

for which the labels were omitted, which resulted in the loss of

a considerable part of the information on the topology of a

crystal structure.

2. Search for topological similarity of `reduced' graphs

Further, we shall consider the compounds with the same

topology of crystal structure as representatives of the same

topological type, irrespective of their chemical composition

and space symmetry, and call them topologically isotypic. Note

that this term gives emphasis to the topological properties

of a system of interatomic bonds, unlike the terms

`con®gurationally isotypic' and `crystal-chemically isotypic'

(Lima-de-Faria et al., 1990), which are related to geometrical

and/or physical properties of atomic sublattices.

As mentioned above, to ®nd the topological isotypism of a

pair of crystal structures, it is enough to answer the question

whether the appropriate RGs are isomorphic to each other.

However, during the crystal-chemical analysis, the search for

compounds having some similarity in the crystal structure is

more interesting than for the completely topologically isotypic

compounds (it is trivial, as a rule). A method for the detailed

analysis of RG topology and for the search of topological

relationships between RGs is proposed below.

For example, let us consider the topological properties of

crystal structures of binary compounds AX. RGs of such

substances comprise vertices of two `colors' corresponding to

atoms of a different chemical nature, i.e. they are bipartite.

Then let us divide a bipartite graph into two subgraphs, which

contain vertices of the same color, keeping graph connected-
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Figure 1
(a) Operation of reducing an in®nite graph of NaCl. The arrows indicate
the direction of the closing edges (edges are not drawn). The volume
containing all vertices of a `reduced' graph is shown. (b) The `reduced'
graph of NaCl. The multiplicity of each edge of the RG is equal to 2.
Open circles Na, ®lled circles Cl.



research papers

180 Blatov � Topological isotypism Acta Cryst. (2000). A56, 178±188

ness. For this purpose, we shall make a division by contraction

of graph edges or vertices (Fig. 2). Namely, we shall sequen-

tially remove all vertices of one color, closing opened ends of

edges. The division of a RG of NaCl is shown in Fig. 3. In terms

of crystal chemistry, such an approach means a separate

analysis of cationic and anionic sublattices. We shall call the

graphs obtained `lattice' graphs (LG) because they describe

the topology of bond systems in atomic multilattices. A

multilattice corresponding to a LG can comprise any subset of

basis atoms (including ones with different chemical nature).

For example, one can consider a RG as a special type of LG,

which include all basis atoms of a crystal structure. If there is

an in®nite system of bonds between the contracted atoms (this

means crystal-chemically the presence of in®nite ligands in a

crystal structure), the construction of LG of corresponding

complexing atoms is impossible. We shall call such LGs

forbidden. Thus, a set of LGs corresponds to each RG. This set

includes the RG itself, all possible variants of selecting atomic

sublattices in it and also forbidden LGs. The method of the

division of the complete graph of a crystal structure into LGs

enables one to ®nd the topological similarity of separate

atomic subnets in compounds whose structures are topologi-

cally different and, as will be shown below, to determine the

relations between crystal structures of chemically and stoi-

chiometrically different substances.

In terms of the graph theory, we consider a topological type

as an abstract ®nite graph corresponding to a set of all

mutually isomorphic RGs or LGs and also as an appropriate

abstract in®nite graph. A topological type is called by the

name of one of its representatives, from which the ancestor of

one of the known structure types can be selected. Note that we

consider crystallographically nonequivalent atoms (also with

different chemical nature) as atoms of the same topological

sort if corresponding LGs are isomorphic. Thus, the role of the

terms `topological isotypism', `topological type', `topological

sort of atoms' in this `topological' scheme of classi®cation is

similar to the role of the terms `isostructurality', `structure

type', `crystallographic sort of atoms' in the `geometrical'

schemes.

In turn, several topological types can be combined into one

crystal-chemical group. According to Serezhkin (1986), the

crystal-chemical group includes the compounds with identical

stoichiometric composition of complex groups, with the same

relation of coordination centers and ligands of a given coor-

dination type, with equal coordination numbers (CN) of

complexing atoms, and also with equal maximum possible

quantities Ht � CNA�CNA ÿ 1� of the complexing atoms A

connected with a basis atom by all bridge ligands (CNA is the

number of ligands connected with the atom A). In terms of the

graph theory, this means that the degree of a vertex of a

LG conforming to a sublattice of complexing atoms of a

compound cannot exceed an appropriate Ht value. In other

words, the crystal-chemical group describes the local topology

of a complex group within the ®rst and second coordination

spheres of complexing atoms. The degree of a LG vertex

corresponds to the Hp quantity proposed by Serezhkin (1986)

and can be calculated without taking into account the multi-

plicity of edges of an in®nite graph (i.e. the multiplicity of

Figure 2
Procedure of contracting the graph fragment (I) to the fragment (II). The
contracted vertex is marked.

Figure 3
Dividing a `reduced' graph of NaCl (see also Fig. 1) into the `lattice' graphs by the operation of contracting its vertices. The numerals at vertices (in
brackets) and at edges specify the number of loops and edge multiplicity, respectively. The dashed lines indicate removed vertices.



chemical bonds) according to the formula Hp � v� e� f ,

where the quantities v, e and f specify the number of coordi-

nation polyhedra with which the coordination polyhedron of

an atom A shares vertices, edges and faces, respectively. Hp

and Ht are connected by the formula

Hp � Ht ÿ eÿP
i

�ni ÿ 1�fi; �1�

where ni is the number of vertices of the ith face of a coor-

dination polyhedron and fi is the number of such faces.

The characteristics Hp, v, e and f can be used during the

search of isomorphism of LGs because a difference in their

values unambiguously indicates that the compared LGs are

not isomorphic. For the deeper search of isomorphism, one

can consider the composition of long-range coordination

spheres of atoms in the subnets by calculation of coordination

sequences (Brunner & Laves, 1971). Following Grosse-

Kunstleve et al. (1996), we mean under the kth coordination

sphere (shell) a set of such vertices in an in®nite graph

corresponding to a LG, for which the length of the shortest

simple chain connecting this vertex with the vertex accepted as

central is exactly equal to k. In terms of the graph theory, the

kth coordination sphere corresponds to the kth layer of

vertices of the in®nite graph. According to Grosse-Kunstleve

et al. (1996), we designate the number of vertices (atoms)

in the kth coordination sphere as Nk. In particular,

Hp � N1 � v� e� f . It is a set {Nk} that forms a coordination

sequence.

Generally, each crystallographically nonequivalent atom of

a crystal structure can be characterized by an individual

collection (v, e, f, Nk). The system of such collections for all

crystallographically nonequivalent atoms included in a LG

characterizes its topology within the ®rst k coordination

spheres. If a (generally speaking homomorphic) relation can

be speci®ed for a pair of LGs on a set of collections (v, e, f,

Nk), then one can assume that the topology of these LGs is the

same in the range of the ®rst k coordination spheres. Let us

emphasize that the homomorphism (or isomorphism) of

collections (v, e, f, Nk) does not mean the strict isomorphism of

compared LGs. However, it indicates that the topology of

appropriate atomic subnets is more similar the greater the k

value is. At present, we do not know any examples of non-

isomorphic LGs with identical sets of Nk at k � 5 for the real

crystal structures.

If the way of binding coordination polyhedra is not taken

into account and only the sequences {Nk} are considered, one

can detect the further topological similarity of LGs. Herein-

after, we shall call two RGs (or LGs) essentially isomorphic/

non-isomorphic if their coordination sequences are identical/

different at k � 3. First of all, this term has chemical meaning

because the similarity of the topology of the system of

interatomic bonds within the ®rst three coordination spheres

allows one to assume that the in¯uence of the nature of

chemical interaction in the considered compounds on their

topology is of the same type.

Further, if an isomorphic mapping of the set of LGs,

corresponding to a RG of one of the compared crystal struc-

tures, into the set of LGs of other crystal structures can be

found according to the above-mentioned criterion of identity

of the topology of LGs, then one can assume that these crystal

structures are similar to each other up to the nth coordination

sphere. For example, a unit cell of the triclinic polymorphic

modi®cation of tridymite (Konnert & Appleman, 1978)

contains 80 and 160 nonequivalent atoms of silicon and

oxygen, respectively. The same number of collections (v, e, f,

Nk) will characterize LGs of these atoms. However, all such

collections are the same for silicon atoms and for k � 4 look

like (4, 0, 0, 4, 12, 25, 44), whereas there are only two different

collections for oxygen atoms: (6, 0, 0, 6, 18, 48, 82) and

(6, 0, 0, 6, 18, 48, 86). Therefore, one can ®nd the isomorphism

between three indicated sets of collections and three collec-

tions for one nonequivalent silicon atom and two non-

equivalent oxygen atoms in the crystal structure of a

hexagonal two-layer modi®cation of tridymite containing the

same values of v, e, f, Nk. This fact indicates the identity of the

topology of the silicon±oxygen framework in both compounds.

Note that this method allows one to ®nd the relationship of

crystal structures of the compounds, the systems of inter-

atomic bonds of which are not completely isomorphic, and

also does not depend on the value of their geometrical

distortion.

These principles of topological analysis can be used for a

study of crystal structure not only as a whole but also of any of

its components. As a typical example, let us give the deter-

mination of a type of packing of particles (atoms, molecules,

ions) forming a sublattice in a crystal structure. In this case, the

atoms that do not belong to this sublattice are not taken into

account at the construction of the RG of a crystal structure.

Since the atoms of a sublattice do not form the chemical bonds

with each other, as a rule, on restoring the connectedness of

such an `incomplete' RG one must take into account nonvalent

(weak ionic or van der Waals) contacts between them. The

topological analysis of an `incomplete' RG can be ful®lled

according to the scheme described above. For this, the preli-

minary division into LGs is not usually required because the

selection of a necessary sublattice has already been made at

the stage of the construction of an `incomplete' RG. The Nk

values obtained should be compared with the coordination

sequences, which are typical for various close packings

(Table 1) (see also O'Keeffe, 1995; Conway & Sloane, 1997).

This approach enables one to identify the type of packing at

any degree of distortion.

Below, we shall consider a problem of computer automation

of the search for the topological isotypism of crystal structures

and also for the topological relationship of not completely

topologically isotypic compounds within the framework of the

described `topological' method of classi®cation.

3. Comparing the topology of crystal structures with
the program IsoTest

To search the topological relationship through large groups

of chemically different compounds, we have developed the

program IsoTest as part of the package of structural topo-
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logical programs TOPOS (Blatov et al., 1999). The algorithm

of the program IsoTest is based on the representation of a

crystal structure as a RG. The problem of restoring the

connectedness of a crystal lattice (or, otherwise, the problem

of determination of an adjacent matrix of a RG, that is a way

of computer representation of a RG) is solved with the

program AutoCN, which is also integrated into TOPOS. For

automatic identi®cation of interatomic (including nonvalent)

bonds, the method of intersected spheres (Serezhkin et al.,

1997) is applied in AutoCN, which is based on the repre-

sentation of an atom in a crystal ®eld as its Voronoi±Dirichlet

polyhedron. This method enables one to determine unam-

biguously the CNs of all atoms of a crystal structure, including

ones that form bonds of various strength and chemical nature.

The comparison of collections (v, e, f, Nk) or only of coordi-

nation sequences {Nk} is stipulated for the search of a degree

of topological relationship of RGs. Then various variants of

simpli®cation of a complete RG are considered in the program

IsoTest, which correspond to various levels of detailing the

structure of a crystal, namely:

(i) Not the whole set of LGs is taken into account, but only

some of its subsets. Otherwise, several atomic sublattices are

selected in a crystal structure, which can be considered as

sublattices of complexing (`central') atoms. Other atoms will

belong to ligands and provide the connectedness of

complexing atoms (i.e. of LG vertices). Generally speaking,

the number of different variants of selecting a subset of LGs

(nLG) is determined only by the number of LGs (m) (i.e. by the

number of chemically different atoms in the composition of a

substance):

nLG �
Pm
i�1

m!=�mÿ i�!i! �2�

and is not too large in practice [for example, for a quaternary

compound (m = 4), nLG = 15].

(ii) For each of the indicated nLG ways of selecting atomic

sublattices, all variants are considered for removing the atoms

that do not belong to LGs of complexing atoms, together with

the bonds formed by them. For example, during the study of

zeolites, it is reasonable to exclude all atoms inside channels if

the topology of a silica±alumina framework is considered or,

vice versa, to exclude all cations of the framework if the

structure of channels should be analyzed. Apparently, the

number of variants of removing other atoms at a given number

of LGs of complexing atoms [the i variable in formula (2)] can

also be calculated with formula (2) if one assumes that

m � mÿ i.

(iii) Lastly, all variants of `contracting' other atoms to

complexing atoms can be considered for each variant of

selecting LGs of complexing atoms and removed atoms. From

the viewpoint of the crystal-chemical description of a crystal

structure, the operation of contracting is equivalent to

considering some polyatomic groups as quasimonoatomic. For

example, it is known that the crystal structures of NaNO3 and

NaCl are similar to each other if one associates the nitrate ion

with the chloride ion, i.e. considers it as quasimonoatomic. The

same result can be drawn by comparing RGs of these crystal

structures if one considers nitrogen and chlorine atoms as

complexing atoms and we contract oxygen atoms to nitrogen

atoms. Thus, each LG is characterized not only by the

collection of its topological parameters (v, e, f, Nk) but also by

the collection ({CA}, {TA}, {DA}), which contains the sets of

central (CA), contracted (`tightened' TA) and removed

(`deleted' DA) atoms and describes some way to represent a

crystal structure. Note that the effect of contracting all atoms

of ligands, which results in the selection of the skeleton of a

complex group consisting only of complexing atoms, is

topologically equivalent to considering a set of LGs of

complexing atoms without contracting (the ®rst level of

detailing) and, therefore, should not be taken into account.

The total number of variants of selecting atomic sublattices in

the structure of a crystal (NLG) increases quickly with

increasing m. Thus, for m = 2, 3, 4 or 5 (a greater number of

different elements in one compound is found very rarely),

NLG = 5, 31, 161 or 751, respectively. At the same time, a trivial

topology (for example, a molecular complex group) corre-

sponds, as a rule, to the majority of these variants (especially

to the variants of removing atoms from a crystal structure),

therefore the complete topological analysis of a crystal

structure can be carried out at reasonable machine time (of

the order of several hours on a Pentium 200 MHz for the most

complex examples).

Let us emphasize that in the known `topological' schemes

of crystal-chemical analysis only a small part of the NLG

possible variants of selecting sublattices in a crystal structure

is ordinarily considered. For example, the analysis of sili-

cates is usually restricted by the study of the ways of

concatenating silicon±oxygen tetrahedra that corresponds in

terms of the method described to the selection of a LG of

silicon atoms only. At the same time, the study of topology

Table 1
Coordination sequences for some close packings with L layers.

k

L²
Layer
type 1 2 3 4 5 6 7 8

2 (h)³ h 12 44 96 170 264 380 516 674
3 (c)§ c 12 42 92 162 252 362 492 642
4 (hc) h 12 42 96 170 264 378 516 674

c 12 44 96 170 264 380 516 674
5 (hhc1c2c1) h 12 43 94 165 260 375 508 661

c1 12 43 94 168 260 372 508 661
c2 12 42 96 168 260 372 504 666

6 (hcc) h 12 42 92 168 264 380 516 672
c 12 43 96 169 264 380 516 673

7 (c1hc2c3c3c2h) h 12 42 94 166 258 375 512 669
c1 12 44 96 168 260 372 512 672
c2 12 43 94 166 262 378 512 666
c3 12 42 94 169 264 378 512 666

8 (c1c2c1h) c1 12 43 94 168 262 379 516 674
c2 12 42 96 170 264 378 516 674
h 12 42 92 162 260 378 516 674

9 (chh) c 12 44 96 168 264 378 512 672
h 12 43 96 169 262 378 514 669

² The sequence of closely packed layers is speci®ed in brackets; c cubic, h hexagonal
closely packed layer. ³ H.c.p. packing. § F.c.c. packing.



both of binding oxygen atoms with cations located in

cavities of a framework and of other atomic sublattices

(there are 30 additional variants for a simple silicate!) may

be of interest.

For each of the compounds investigated, the program

IsoTest forms a database on the topology of the complete RG

of a crystal structure and of atomic subnets obtained by all

possible variants of its simpli®cation. The data in the calcu-

lation include collections (v, e, f, Nk) for each of the

complexing atoms selected in the given variant, the user can

set the quantity k, specifying the depth of the analysis of the

LG topology. The depth of the analysis cannot be too large

because the rate of calculation of Nk quickly decreases with

increase of k. Experience shows that it is enough to select k = 3

during the initial analysis, which enables one to distinguish

essentially non-isomorphic LGs and to sort roughly the

compounds according to their topology. One can increase k for

more precise classi®cation. As was mentioned above, the

equality of all Nk at k � 5 allows one to

assume that LGs are isomorphic to each

other.

The program IsoTest provides the

following two-stage analysis of the

created database with the purpose of

determination of a degree of topological

relationship of crystal structures. In the

®rst stage, the search for isomorphism

of separate atomic subnets (LGs) in

compared compounds is carried out. As

will be shown below, in this case one can

®nd a similarity between substances that

seem to be crystal-chemically completely

different. In the second stage, the crystal

structures should be found, RGs of which

(possibly modi®ed by removing or

contracting some vertices) are essentially

isomorphic to each other. The search for

isomorphism of RGs is carried out by

determining the relation between sets of

their LGs, taking into account the modi-

®cation of RGs. Let us consider as an

example the RGs of NaCl and NaNO3 for

crystal structures of which one can

propose 5 and 31 variants of the selection

of atomic sublattices, respectively. The

topological characteristics of appropriate

LGs are given in Table 2. As was already

mentioned, in many cases the modi®ca-

tion of a RG results in its decomposition

on a set of isolated ®nite graphs corre-

sponding to molecular structural groups,

whose topology is trivial in terms of LGs

(in particular, all Nk = 0 starting from

some k value). There are 2 and 13 such

variants of modi®cation for NaCl and

NaNO3, respectively, which are not of

interest for the topological analysis

(Table 2). The topology of a forbidden LG is also trivial

because in this case all Nk =1. This variant is realized in the

crystal structure of NaNO3 when considering LGs of nitrogen

atoms (Table 2). LGs with a nontrivial topology should be

grouped before comparison according to the following rules of

complementarity:

(i) the sets of removed atoms {DA} must be identical;

(ii) the sets of complexing atoms {CA} and of the atoms

contracted to them {TA} must not be intersected;

(iii) the union of sets {CA} [ {TA} [ {DA} must coincide

with the set of chemical sorts of atoms of a crystal structure.

The complementarity of several LGs means that all of

them can be obtained as a result of dividing a RG, i.e. they

completely characterize the topology of a crystal structure at

some level of its description. For example, in the RG of

NaNO3, the LGs of nitrogen atoms with contracted oxygen

atoms and of sodium atoms are complementary to each other

(the group of collections [(CA: {N}, TA: {O}, DA: { }); (CA:
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Table 2
The topological characteristics of atomic subnets in the crystal structures of NaCl and NaNO3.

Method of RG modi®cation² Topological characteristics of LG

No.³ CA TA DA v e f N1 N2 N3

NaCl
1, 2 {Na}, {Cl} { } { } 6 12 0 18 66 146
3, 4 {Cl}, {Na} Molecular groups
5 {Na,Cl} { } 6 0 0 6 18 38

NaNO3

1 {N} { } { } Three-dimensional framework NaO3

2, 3, 4 {Na}, {O}, {Na, O} Molecular groups
5, 6 {Na} { }, {O}
7 {O} { } 6 12 0 18 66 146
8 {Na} Molecular groups
9 {Na} { } { } 6 12 0 18 66 146
10 {N} 6 0 0 6 18 38
11, 12 {O}, {N, O} Molecular groups
13 {N} { } 6 0 0 6 18 38
14 {O} Molecular groups
15 {O} { } 6 6 6 18 66 146
16 {N} 6 0 0 6 18 38
17 {O} { } { } 12 0 0 12 56 140
18 {N} 10 0 0 10 46 106
19, 20 {Na}, {N, Na} Molecular groups
21 {N} { } 12 0 0 12 56 140
22 {Na} Molecular groups
23 {Na} { } 12 0 0 12 56 140
24 {N} 10 0 0 10 46 106
25 {Na,§

O}
{ } { } 6 0 0 6 18 36

4 0 0 4 14 38
26 {N} 6 0 6 6 6 30

2 0 0 2 10 10
27 {N,§

Na}
{ } 6 0 0 6 38 90

12 0 0 12 44 98
28 {O} Molecular groups
29 {N,§

O}
{ } 3 0 0 3 27 102

11 0 0 11 55 134
30 {Na} Molecular groups
31 {N,§

Na,
O}

{ } 3 0 0 3 6 27
6 0 0 6 12 36
3 0 0 3 12 21

² The sets are indicated of atoms assumed as complexing (CA), of atoms contracted to complexing atoms (TA) and of
atoms removed from a crystal structure (DA) at the analysis of the topology of a LG of complexing
atoms. ³ Number of variant of selection of an atomic sublattice (or LG). § The complexing atoms of this LG
are characterized by different collections (v, e, f, Nk).
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{Na}, TA: { }, DA: { })] corresponds to them). These LGs

specify the topology of an appropriate RG on contracting

oxygen atoms to nitrogen atoms, i.e. on considering NaNO3 as

a quasibinary AX compound, where X = NO3. The collection

(CA: {Na}, TA: {O}, DA: {N}) forms a group itself and

corresponds to selecting a framework of the coordination

polyhedra NaOn in the crystal structure of NaNO3 without

taking into account their connection to nitrogen atoms of

nitrate groups. Hereinafter, we shall not indicate empty sets

when writing collections. A group of complementary LGs,

corresponding to a nonmodi®ed RG of a crystal structure (in

it all collections contain only the sets {CA}), will be called

general. This group characterizes the topology of a crystal

structure as a whole. Other groups of LGs will be called special

because they correspond to the crystal structure modi®ed one

way or another. The number of variants of representation of a

crystal structure (or, otherwise, the number of groups of LGs)

depends only on m. In particular, binary and ternary

compounds can be represented in 4 and 27 different ways,

respectively. For example, four variants of representation of

the crystal structure of NaCl, characterized by the groups

[(CA: {Na}); (CA: {Cl})], [(CA: {Na}, DA: {Cl})], [(CA: {Cl},

DA: {Na})] or [(CA: {Na, Cl})], correspond to selecting two

sublattices (cationic and anionic) in the crystal structure,

removing one of the sublattices or considering the cationic

anionic framework as a whole.

Then in the program IsoTest, the groups of LGs generated

for various compounds are compared with each other. Two

compounds are assumed to be topologically close if a bijective

relation between at least two special groups of complementary

LGs belonging to the compounds can be found on the basis of

essential isomorphism of LGs. For this, it is necessary to take

into account the method of modi®cation of the RG of a crystal

structure for each special LG. If the relation can be found for

general groups of LGs, we shall combine such compounds into

the same topological type. In particular, the analysis of the

data of Table 2 shows that two relations can be established

between special groups of LGs of NaCl and NaNO3. Namely,

the special group of LGs of NaNO3 [(CA: {N}, TA: {O}); (CA:

{Na})] and the general group of LGs of NaCl [(CA: {Na});

(CA: {Cl})], and also the special group of NaNO3 [(CA: {Na},

TA: {O}, DA: {N})] and another general group of NaCl [(CA:

{Na, Cl})] are essentially isomorphic. Thus, the crystal struc-

ture of NaCl is topologically close to the cationic±anionic

subnet in the crystal structure of NaNO3 (if nitrate ions are

considered as quasimonoatomic groups) and also to the

framework of coordination polyhedra of sodium atoms

without taking into account nitrogen atoms. Nevertheless,

these compounds cannot be related to the same topological

type because the crystal structure of NaNO3 should be

modi®ed before comparison in the two cases.

Generally speaking, within the framework of the proposed

scheme of crystal-chemical classi®cation, one can discern three

levels of topological relationship for a pair of compared

groups of compounds:

(i) an essential isomorphism of only one or several pairs of,

generally speaking, noncomplementary atomic sublattices;

(ii) an interrelation within one or several pairs of special

groups of LGs, indicating the topological similarity of crystal

structures of considered compounds;

(iii) an interrelation within a pair of general groups of LGs,

showing the complete topological equality of compared

structures and their belonging to the same topological type

(topological isotypism).

Hereinafter, we shall call the compounds having a topo-

logical relationship of the second level topologically partially

isotypic to emphasize that the similarity of the topology of

their crystal structures can be found only after an appropriate

modi®cation. Those are the crystal structures of NaCl and

NaNO3. The ®rst level of topological relationship indicates the

topological isotypism of separate atomic subnets and rather

weak resemblance of crystal structures of considered

substances.

4. Examples of the use of the program IsoTest

As an example of application of the described technique, let us

consider the results of the analysis of topological similarity

of crystal structures of simple sulfates, oxo-sulfates with the

general composition MxOy(SO4)z or double anhydrous

sulfates M1xM2y(SO4)z, where M, M1, M2 are metal atoms,

and of binary compounds AyXz. For the study, the database

containing the information on crystal structures of 2486 AyXz

compounds, and 76 simple and 52 double sulfates was created

by means of the program package TOPOS. The calculation of

the topological characteristics of LGs within the ®rst three

coordination spheres for all variants of modi®cation of RGs of

these compounds with the program IsoTest required about a

day of machine time of a Pentium 200 MHz. Then the

complementary LGs were grouped for each compound from

the database and the groups of LGs obtained for sulfates were

compared with LGs corresponding to binary compounds by

means of the program IsoTest according to the conditions

mentioned above.

4.1. Topological analysis of simple sulfates

A typical example of a topological relationship of the ®rst

level detected for the majority of sulfates is an essential

isomorphism between LGs of two types: (i) a LG speci®ed by

the collection (CA: {M}, TA: {O}; DA: {S}) and corresponding

to a sublattice of metal atoms; and (ii) LGs (CA: {A, X}) or

(CA: {A}); (CA: {X}) conforming to the lattice of AyXz as a

whole or to separate sublattices consisting of the atoms A or

X. For example, in the crystal structure of high-temperature

�-BaSO4 (Sawada & Takeuchi, 1987), for the LGs of this type

the Nk values are equal to 12, 42, 92 at k = 1, 2, 3 (N1±3),

respectively, which is typical for a f.c.c. lattice (Table 1). In

particular, the same N1±3 values describe the topology of LGs

for atomic subnets in the crystal structures of substances

belonging to the sphalerite type or for the crystal structure of

uranium silicide U3Si (Kimmel, 1975), in which uranium and

silicon atoms together form a distorted close packing. In the



crystal structure of 
-CaSO4 (Bezou et al., 1995), the LG (CA:

{Ca}, TA: {O}; DA: {S}) is characterized by N1±3 = 4, 12, 30,

which indicates the topological similarity of the subnet of

calcium atoms with the crystal structure of �-HgS (Auvray &

Genet, 1973) or with the subnet of silicon atoms in quartz,

having the same values of N1±3. It is of interest that the subnets

of zirconium atoms in Zr3O5SO4 (Li et al., 1988) and of silver

or iodine atoms in a four-layer polytypic modi®cation of AgI

(Johnson & Schock, 1976) are topologically similar. For these

subnets, N1±3 = 9, 21, 33. Similarly, one can ®nd the corre-

spondence between the pairs HgSO4 and CsCl (26, 56, 98) or

CaSO4 (anhydrite) and NaCl (18, 38, 66) (in brackets the

values N1±3 are indicated for LGs of metal atoms). For some

sulfates, removing sulfur atoms from the graph of a crystal

structure [the appropriate group of LG comprises the collec-

tions (CA: {M}, DA: {S}) and (CA: {O}, DA: {S})] results in a

decrease of its dimensionality. For example, in the crystal

structures of TiOSO4 (Grey & Stranger, 1992) and VOSO4

(Boghosian et al., 1995), one can select the chains MO5, which

are topologically similar to the complex groups in such

compounds as PtF5 or UF5. The subsequent contraction of

oxygen atoms, resulting in the LG (CA: {M}, TA: {O}; DA: {S}),

gives a simple chain, which consists of connected metal atoms

( . . . ÐMÐMÐMÐ . . . ) and is topologically equivalent to

LGs of binary compounds containing similar chains, for

example, AuCl or SN. Note that for every considered sulfate

one can ®nd the binary compound, which is topologically

isotypic to it at a level of at least some atomic subnet.

The second level of topological relationship can be detected

if one considers the oxygen-containing complex groups in the

crystal structure of sulfates as quasimonoatomic. The consid-

eration of the sulfate ion as such a group is the most essential

crystal chemically because the bonds SÐO are stronger than

the bonds MÐO, as a rule. In this case, the group of LGs will

include the collections (CA: {S}, TA: {O}) and (CA: {M}). At

the same time, the consideration of the group [(CA: {M}, TA:

{O}); (CA: {S})] is also possible, which corresponds to the

variant of RG modi®cation by means of contraction of oxygen

atoms to metal atoms, i.e. to division of the crystal structure of

a sulfate into sulfur atoms and quasimonoatomic MOn groups.

The examples of topological partial isotypism of binary

compounds and sulfates in this kind of representation of their

crystal structures found with the program IsoTest are given in

Table 3. In addition to coordination sequences, the values of

coordination numbers (CN) of atoms in an appropriate

modi®ed RG are also indicated in Table 3. In particular, the

CN of a metal atom in the crystal structure of a sulfate is equal

to the number of sulfate groups connected to it.

The third level of topological relationship for considered

groups of compounds is found rarely. In this case, its imple-

mentation means that a sulfate may be considered as a

quasibinary compound if one does not differentiate atoms of

different chemical sorts. Thus, for the crystal structure of

BeSO4 (Grund, 1955) and two variants of the high-tempera-

ture modi®cation of ZnSO4 (Spiess & Gruen, 1978), the

combination of metal and sulfur atoms into one sublattice

enables one to establish their similarity with the crystal

structure of cristobalite [their LGs (CA: {M, S}) and (CA: {O})

correspond to the LGs (CA: {Si}) and (CA: {O}) of cristoba-

lite]. It should be noted that the relationship between the
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Table 3
Examples of the topological relationship of the second level between crystal structures of the sulfates My(SO4)z and binary compounds AyXz according
to the scheme M$A; SO4$X.

Sulfate Type of packing² AyXz³ Composition of LG CN N1 N2 N3

Zr(SO4)2§ H.c.p. (Zr) PbCl2 Zr, Pb 7 12 44 96
SO4, Cl 3 21 81 186

4 15 77 172
M2(SO4)3 (M = Al, Ga, In, Fe, Cr) H.c.p. �-Al2O3 M, A 6 13 46 101

SO4, X 4 16 66 150
M2(SO4)3 (M = In, Fe, Er) ± Rh2O3; Rh2S3 M, A 6 14 50 110

SO4, X 4 16 70 163
4 17 72 162

PdSO4§ F.c.c. (Pd) PtS, CuO Pd, A 4 10 42 92
SO4, X 4 10 42 90

MSO4§ (M = Be, Zn) F.c.c. ZnS (sphalerite) M, A, SO4, X 4 12 42 92
MSO4 (M = Pb, Sr, Ba) H.c.p. (M) CoB M, A 7 22 90 198

SO4, X 7 24 90 200
MSO4 (M = Hg, Ca, Sr, Ba) F.c.c. NaCl M, A, SO4, X 6 18 66 146
MSO4 (M = Zn, Cu, Fe, Co, Ni, Mg, Mn, Cd) H.c.p. FeS M, A 6 20 74 164

SO4, X 6 18 74 162
Ag2SO4 F.c.c. (Ag) TiSi2 Ag, Si 5 30 128 288

SO4, Ti 10 18 66 146
Li2SO4 F.c.c. CaF2 Li, X 4 22 82 182

SO4, A 8 12 42 92
SnSO4§ F.c.c. SnS Sn, A, SO4, X 3 6 12 18
As2O2SO4 F.c.c. �-HgI2 As, I 2 6 16 24

SO4, Hg 4 4 8 12

² The types of close packings of ions, determined by an analysis of appropriate incomplete RGs, are given. By default, close packing consists of sulfate ions, in other cases the atoms of
close packing are speci®ed in brackets. ³ The representatives of structure types for a great number of compounds are underlined. In other cases, all found topologically isotypic binary
compounds are indicated. § In crystal structures of these compounds, the correspondences MOn$A; S$X are also observed.
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crystal structures of cristobalite and BeSO4 was speci®ed by

Grund (1955). Under these conditions, the layer structures of

(IO)2SO4 (Furuseth et al., 1974) and �-HgI2 (Delgado et al.,

1987), and also of SnSO4 (Donaldson & Puxley, 1972) and

As2O4 (Jones et al., 1980) appear to be similar. It is of interest

that arsenic oxo-sulfate As2O2SO4 (Mercier & Douglade,

1982), whose composition is similar to (IO)2SO4, is also

topologically related to �-HgI2, however, only at the second

level (Table 3). On the whole, 36 and 5 considered sulfates and

some binary compounds have the topological relationship of

the second and third level, respectively, and 4 of those 5

sulfates [not (IO)2SO4] are contained in both indicated groups.

Table 4
Examples of a topological relationship of the second level between crystal structures of the sulfates M1xM2y(SO4)z and binary compounds AyXz

according to the scheme M1, M2$A; SO4$X.

See also Tables 2 and 3 for details.

Sulfate DA Type of packing AyXz Composition of LG² CN N1 N2 N3

M12M22(SO4)3

(M1 = K, Tl;
M2 = Mg, Mn, Co, Cd, Zn)

± ± Th3P4 M1+M2, X 6 26 113 293
SO4, A 8 20 86 224

Li2Mg2(SO4)3 Li ± Rh2O3; Rh2S3 Mg, Rh 6 14 50 110
S(1)O4, X(1) 4 17 72 162
S(2)O4, X(2) 4 16 70 163

M13M2(SO4)3

(M1 = Na,Cs; M2 = V,Yb)
M1 H.c.p. �-TiCl3 (chains) M2, A 6 2 2 2

SO4, X 2 8 6 6
M1M2(SO4)2

(M1 = Na, K, Cs; M2 = Al, V, Fe)
M1(M2) H.c.p. CdI2 (layers) M2(M1), A 6 6 12 18

SO4, X 3 12 24 36
± FeS M1+M2, A 6 20 74 164

SO4, X 6 18 74 162
M1LiSO4

(M1 = K, Rb, Cs)
M1 H.c.p. ZnS (wurtzite) Li, A, SO4, X 4 12 44 96
Li FeS M1, A 6 20 74 164

SO4, X 6 18 74 162
KPr(SO4)2 ± H.c.p. (K+Pr) CoB K+Pr, A 7 22 90 198

SO4, X 7 24 90 200
LiPr(SO4)2 Pr F.c.c. SnO, PbO (layers) Li, SO4, A, O 4 8 16 24
LiEu(SO4)2 Li ± TiO2 (rutile) Eu, A 6 10 34 74

SO4, X 3 14 62 144
�-LiNaSO4 Li ± "-TaN Na, N 5 16 66 156

S(1)O4, Ta(1) 3 12 56 140
S(2, 3)O4, Ta(2, 3) 6 17 65 152

K3Er(SO4)3 K F.c.c. AF5 (A = V, Nb, Bi, U)
(chains)

Er(1), A 6 2 2 2
S(1, 2, 4, 6)O4, F(2) 1 5 10 10
S(5)O4, F(1) 2 10 10 10

KEr(SO4)2 K H.c.p. (Er) SrX2 (X = Br, I) Er, Sr 7 10 36 78
S(2)O4, X(1) 4 19 70 152
S(1)O4, X(2) 3 15 62 148

Cs2Ce(SO4)3 Cs F.c.c. �-BiBr3 (layers) Ce, A 6 3 6 9
SO4, X 2 9 16 28

M1M2(SO4)2

(M1 = K, Rb; M2 = V, Tl)
± F.c.c. NaCl M1+M2, A, SO4, X 6 18 66 146
M1(M2) MgCl2 (layers) M2(M1), A 6 6 12 18

SO4, X 3 12 24 36
RbLu(SO4)2 Lu F.c.c. BeCl2 (chains) Rb, A 4 2 2 2

SO4, X 2 5 4 4
Rb MgCl2 (layers) Lu, A 6 6 12 18

SO4, X 3 12 24 36
RbDy(SO4)2;

K2Pb(SO4)2;
CsLa(SO4)2

K(Rb, Cs) H.c.p. CdI2 (layers) Pb(Dy, La), A 6 6 12 18
SO4, X 3 12 24 36

RbEu(SO4)2 Eu F.c.c. CaF2 Rb, A 8 12 42 92
SO4, X 4 22 82 182

Rb MgCl2 (layers) Eu, A 6 6 12 18
SO4, X 3 12 24 36

Na6Mg(SO4)4 Na ± AF4 (A = Sn, Pb, V, Nb)
(layers)

Mg, A 6 4 8 12
S(1)O4, F(1) 2 10 28 44
S(2)O4, F(2) 1 5 20 36

CsPr(SO4)2 Cs ± CdI2 (layers) Pr, A 6 6 12 18
SO4, X 3 12 24 36

Pr ± MoS2 (layers) Cs, A 6 6 12 18
SO4, X 3 13 24 36

± 4-layer h.c.p.
(Cs+Pr)

TiP, TiAs, ZrAs SO4, A 6 19 72 163
Pr, X(1) 6 18 74 162
Cs, X(2) 6 18 66 162

² The records `M1+M2' and `M1(M2)' mean `M1 and M2' and `M1 or M2', respectively. The ordinal numbers of nonequivalent atoms [for instance, S(1)] are given according to original
papers.



39 of 76 investigated sulfates have no topologically isotypic

analogs among the compounds AyXz.

4.2. Topological analysis of double sulfates

In the analysis of the topology of the crystal structure of a

double sulfate M1xM2y(SO4)z (m = 4), there are already 161

variants of selection of atomic sublattices. In this connection,

we shall deal with only such variants of the description of a

crystal structure in which the sulfate ion is represented as a

quasimonoatomic group. In other words, we shall take into

account only the groups of LGs that comprise such collections

as (CA: {S}, TA: {O}, DA: { }, {M1} or {M2}) and one of the

collections (CA: {M1, M2}); (CA: {M1}, DA: {M2}) or (CA:

{M2}, DA: {M1}). Accordingly, all the variants of the topo-

logical relationship of double sulfates with binary compounds

given in Table 4 can be combined into two groups:

(i) a subnet of metal atoms in the crystal structure of a

double sulfate is considered as a whole, (CA: {M1, M2}, DA:

{ });

(ii) one of the metal atoms is removed from the RG of a

double sulfate (DA: {M1} or DA: {M2}), which is equivalent to

the separation of a subnet, corresponding to simple sulfates

M1x(SO4)z or M2y(SO4)z.

In the ®rst case, a subnet composed from metal atoms of two

sorts (M1 + M2) is put in correspondence with a monoatomic

subnet of the atoms A or X. In four of ®ve detected examples

of topological isotypism in this group (Table 4), the stoi-

chiometric composition of sulfates and appropriate binary

compounds is similar [M1M2(SO4)2 and AX], however, the

topology of crystal structure differs in the type of packing of

sulfate ions and/or of metal atoms. The interesting variant of

structural correspondence is found for sulfates which are

described by the ratio (x + y):z = 4:3 and stoichiometrically

similar to chalcogenides, phosphides and antimonides of f

elements, belonging to the structure type of Th3P4. In this case,

sulfate ions form a distorted two-layer h.c.p. and metal atoms

of two types are situated in octahedral holes of this packing.

Examples of topological relationships of the second type

are more manifold. Although a double sulfate can be formally

considered as a simple sulfate without taking into account one

of the metal atoms, the cases of similarity of their topology are

not numerous. Apparently, this is due to a decrease in the

dimensionality of the structural groups M1x(SO4)z or

M2y(SO4)z, which is frequently caused by removing a metal

atom from the crystal structure of a double sulfate. Only in the

crystal structures of Li2Mg2(SO4)3 (Touboul et al., 1988) and

RbEu(SO4)2 (Sarukhanyan et al., 1983) are the subnets

Mg2(SO4)3 and Rb(SO4)2 structurally similar to the sulfates

M2(SO4)3 (M = In, Fe, Er) and Li2SO4, respectively (Tables 3,

4). Note that at the primary comparison of the LG topology of

non-three-dimensional structural groups the type of their

mutual packing is not taken into account because for this

purpose the additional analysis of `incomplete' RGs of a

crystal structure should be ful®lled, as was mentioned above.

For example, the layer complex groups Cs(SO4)2 and Pr(SO4)2

in the crystal structure of CsPr(SO4)2 (Bukovec et al., 1978)

are topologically similar to the layers MoS2 and CdI2 in

appropriate binary compounds, however, unlike them the

distorted close packing in CsPr(SO4)2 is formed by cations, not

by anions (Table 4).

In our opinion, the numerous examples of topological

relationships of simple sulfates, of subnets with similar

composition in the crystal structure of double sulfates and of

binary compounds containing the same metal atom requires

attention. Thus, M2(SO4)3 and M2S3 (M = In) or M2O3 (M =

Al, Ga, In, Fe, Cr); MSO4 and MS (M = Zn, Ca, Sr, Ba, Fe, Co,

Ni, Sn) or MO (M = Zn, Hg, Ca, Sr, Ba); Li2SO4 and Li2S or

Li2O have similar structures. In a number of cases, such

compounds, not being topologically related, nevertheless have

close topological characteristics (Table 5). The similarity can

be found either for arbitrarily large fragments of crystal

structures (in this case, the Nk values for the appropriate LGs

are close at any k, for example, as for the pair PdSO4, PdO) or

only for several nearest coordination spheres [in particular, for

the group of sulfates MSO4 (M = Be, Cu, Mg, Mn, Cd)

constructed according to a h.c.p. lattice and appropriate oxides

with f.c.c. packing]. It should also be noted that in most cases

the crystal structure of a sulfate can be described as a distorted

close packing of structural units of one or several types with

the distribution of other atomic groups in the holes of this

packing (Tables 3, 4). A close packing is more often formed by

sulfate ions and less often by large cations of alkali, alkaline-

earth or rare-earth metals, however, there are also compounds

in which some different atomic groups are arranged according

to one of the close packings. Such a striking instance is

RbEu(SO4)2 (Sarukhanyan et al., 1983), each of the three

structural units of which (Rb+, Eu3+ and SO4
2ÿ) form a

strongly distorted f.c.c. packing. The authors of the original

structural investigations, as a rule, do not indicate these

structural regularities, except for compounds with high space

symmetry and simple stereochemistry of complexing atoms

(for instance, BeSO4). Thus, the traditional crystal-chemical

analysis based on the geometrical analysis of the ®rst coordi-
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Table 5
Pairs of compounds that are not topologically similar but have close
topological characteristics.

Compound
Composition
of LG² CN N1 N2 N3 N4 N5

Zr(SO4)2 Zr 7 12 44 96 170 264
S(1)O4 3 15 77 172 316 505
S(2)O4 4 21 81 186 334 519

ZrO2 [T = 30 K
(Kisi et al., 1989)]

Zr 7 12 42 92 162 252
O(1) 3 17 72 175 304 491
O(2) 4 19 82 175 322 491

PdSO4 Pd 4 10 42 92 162 252
SO4 4 10 42 90 162 250

PdO Pd, O 4 12 42 92 162 252
BeSO4 Be, SO4 4 12 42 92 162 252
�-BeO Be, O 4 11 41 90 157 247
MSO4 M 6 20 74 164 290 452

SO4 6 18 74 162 290 450
MO (M = Be, Cu,

Mg, Mn, Cd)
M, O 6 18 66 146 258 402

² The ordinal numbers of nonequivalent atoms are given according to original papers.
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nation sphere of atoms does not allow one to ®nd numerous

structural relations, which can be hidden by a strong distortion

of a crystal structure, which is quite usual for compounds with

complex chemical composition.

5. Conclusions

The given examples demonstrate the ef®ciency of the

proposed method of the search for topological isotypism of

crystal structures and for the relationship in the structures of

substances with essentially different chemical and stoichio-

metric composition. At the same time, the available data do

not allow one to reach unambiguous conclusions about the

reasons and degree of generality of the found corre-

spondences. Therefore, we plan to study interrelations of

topology of crystal structures for other groups of binary,

ternary and quaternary compounds.

This study was carried out with ®nancial support of the

Russian Fund of Fundamental Investigations (project 97-03-

33218).
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